Categories
Marketing & Advertising

Lookalike Modeling – The Best Way to Build Lookalike Audiences

Modern marketers are always looking for ways to grow their successful campaigns and reach new audiences. Lookalike modeling is an effective way to identify customer attributes and use these to build new and larger lookalike audiences to expand the reach of marketing activity.

There are several ways to do this and marketers focus on these attributes and behaviors as the core identifiers of their target audience.

But what if there was a better kind of attribute to identify similar audiences. What if this behavioral data was a better indicator of similarity that just having visited the same product page?

And what if these datasets were underutilized in lookalike modeling – allowing you to build more relevant audiences for your campaigns?

 

The issues with lookalike modeling

Current data on lookalike is, for the most part, a valid way to build lookalikes. But often these datasets are for individuals that look like others in the seed audience.

This might appear obvious but do you want to build your audience based on looks? Wouldn’t it be better to focus on how consumers behave, rather than outdated demographics – such as a page like that occurred years ago?

Well, this is possible when the focus is placed more on act alike audiences, rather than lookalike.

 

Using location to create behavioral based lookalikes

Act alike audience is better than lookalike modeling because you are using more recent data and you are using data which signifies intent. A great example of this is location data. It’s current and traveling to a specific location is a much better signifier of consumer intent.

Behavioural based lookalike modeling is more effective because you can provide narrowly defined attributes and use this to build new and highly relevant audiences to expand your marketing activity.

 

Example – the current way

Let’s look an example, in this case, city gym going customers. This is currently how lookalike modeling works:

We take the existing attributes from our data set of ideal target customers. These might have the following traits:

  • Age: 24-49
  • Male 60%
  • Social profile matches sport interests
  • Mobile-focused

Using this information you could quickly build a lookalike audience that had similar characteristics. The problem is that this same audience profile might overlap with men who are merely interested in watching football matches at home.

This is the problem with focusing on what customers look like, rather than what they do and how they behave.

 

Using location and actions

With action-based lookalike modeling, marketers can rely on dynamic behavior to identify attributes. These attributes can then be used to build more effective lookalike audiences.

Let’s imagine we are still trying to target the same consumers – city going gym goers

We might have customers in our database that exist in our target group but share none of the characteristics discussed above. But they have still converted and carry potential value when building a lookalike audience.

Let’s use location to illustrate this example.

We can identify where the seed lookalike goes and then identify other devices that exhibit similar behaviors.

In this case, we can map our customers, and we can see that a high percentage of them visits both whole foods and a high-end drug store within a three month period.

We can then build a lookalike audience that consists of every other device that enters both of these locations within three months. This can be done anywhere in the world, and we can even use categories of locations (health stores) to make this work in across several different regions.

Our lookalike audience, in this case, would contain people that were demographically different from our customers. They wouldn’t necessarily look like our audience, but they would behave like our customers.

This can ever be extended to build new audiences based on visits to you or your competitor’s real-world locations, which means that you can create competitive lookalikes based on your competitor’s customers.

 

A better way – that can also be combined with your current lookalike modeling

Of course, these attributes can be combined with your current lookalike modeling. A good balance between demographic info and behavioral data is more likely to identify customers that will improve your lead generation.

With the rise of DMP solutions that now have ready to activate location data, it’s the perfect time to use behavior as a building block for lookalike audiences.

Moving to a behavioral-based advertising model with less weight placed on demographics marketers can build more effective audiences and maximize their KPIs.

 

[mkdf_separator class_name=”” type=”normal” position=”center” color=”#E8E8E8″ border_style=”solid” width=”100%” thickness=”3px” top_margin=”50px” bottom_margin=”20px”]

Start building better audiences

[mkdf_button size=”” type=”” text=”Get started” custom_class=”” icon_pack=”font_awesome” fa_icon=”” link=”/contact-data” target=”_self” color=”” hover_color=”” background_color=”” hover_background_color=”” border_color=”” hover_border_color=”” font_size=”” font_weight=”” margin=””]
 
[mkdf_separator class_name=”” type=”normal” position=”center” color=”#E8E8E8″ border_style=”solid” width=”100%” thickness=”3px” top_margin=”20px” bottom_margin=”0px”]
Categories
Marketing & Advertising

What Is Lookalike Modeling? All You Need To Know in 2021

One significant challenge marketers face is how they can grow their audiences once they want to achieve scale.

Growing targets will always mean that marketers need to reach more people. The problem that marketers encounter is how to grow these audiences while keeping them relevant to their product or proposition.

Expanding your audience beyond your current database is crucial to achieving future growth. What digital tools for marketers are there to reach new audiences? How can you ensure that a bigger audience doesn’t mean fewer conversions and less relevant consumers?

 

What is lookalike modeling?

This is where lookalike modeling comes in. Marketers need to find new customers and ensure that these new audiences are relevant to their businesses goals.

Lookalike modeling is the process of identifying new customers that look and behave like your current audience.

It involves taking a seed audience and defining key characteristics which differentiate these. From here smart modeling and other processes will help to identify a new larger, audience that is similar to your current customers.

 

What do you need to start building lookalike audiences?

As with many forms of digital advertising, lookalike modeling works using data. Data comes in many forms, and it’s really up to you to decide on which datasets are the most effective at identifying your target customer.

The most successful lookalike audiences are based on unique first-party data. This needs to encompass a range of first, second and third party datasets that cover both online and offline behavior.

That’s an awful lot of data to process, notwithstanding the process of collecting processing and managing that comes along with it. Luckily there are several solutions to help.

DMP for lookalike audiences

This data is combined with a program that can quickly identify other consumers who exhibit similar behavior. This process usually occurs inside a DMP (data management platform). It can also be done in some demand-side platforms (DSP) as well as in house.

in a little box – a Data management platform is a tool that aggregated and unifies data from many different sources to create a clear, holistic view of your data.

 

How does lookalike modeling work?

If that sounds slightly complicated, do not worry. Lookalike modeling is simple as long as you have the right dataset to work from.

 

Choosing datasets

First party, second party, third party, online, offline CRM, purchase, location – data comes in many different forms and comes from many different places.

You need to pull these datasets into a single place to maximize the effectiveness of your lookalike audiences.

This data is essential to get right. The more information you have, the more likely you are to build a better lookalike audience.

 

Define attributes

Next up you’ll need to identify the attributes or behaviors that identify your most valuable customers.

This will look different depending on the type of data sets you’re using. You can combine attributes from different datasets to create more specific seed audiences.

The more specific your look-alike model, the more likely you will find your target audiences. The stricter your seed audience, the more likely it will help you to realize your goals.

Of course, this will affect the size of your lookalike audiences. The more attributes you select, the more likely you are to filter out potential customers.

Ultimately it depends on the goals of your campaigns and what you want to achieve by building lookalike audiences. If you need to target specific people with a high-value proposition, then it might make sense to use more narrowly defined behaviors.

However, if you are looking to focus on reach and awareness then being less strict with your attributes will generate a larger audience that will most likely drive more awareness.

 

Some examples of datasets and attributes

Location-based lookalike audience

Purchase data

frequency and amount

Browsing history

Interest in specific products

 

Building the lookalike audience

This is done in the DMP or DSP and will look slightly different depending on the type that you use.

For external lookalikes, this might be done via a third party. For example, location-based lookalikes will usually be done by the provider.

The process is similar depending on where it occurs and look like the following.

 

  1. Analyze the seed audience
  2. Apply algorithms to find profiles that match
  3. The result is a lookalike audience

 

[mkdf_separator class_name=”” type=”normal” position=”center” color=”#E8E8E8″ border_style=”solid” width=”100%” thickness=”3px” top_margin=”50px” bottom_margin=”20px”]

Start building powerful audiences

[mkdf_button size=”” type=”” text=”Get started” custom_class=”” icon_pack=”font_awesome” fa_icon=”” link=”/contact-data” target=”_self” color=”” hover_color=”” background_color=”” hover_background_color=”” border_color=”” hover_border_color=”” font_size=”” font_weight=”” margin=””]
[mkdf_separator class_name=”” type=”normal” position=”center” color=”#E8E8E8″ border_style=”solid” width=”100%” thickness=”3px” top_margin=”20px” bottom_margin=”0px”]

 

What can you use lookalikes for?

The primary use for lookalike modeling is to find new prospects for your business.

Building lookalike audiences allow marketers to scale their campaigns to relevant consumers. With the instant reach available to marketers via digital targeting platforms, lookalike modeling can instantly help a business scale their key metrics and improve their bottom line.

Lookalike targeting can also help to extend the reach of specific campaigns. All campaigns eventually run dry, no matter how effective they are. Using lookalike audiences, these high performing campaigns can be extended to reach new audiences that will hopefully have a similar level of conversion.

Audience modeling is part of every successful media buying strategy. All media buyers should be aware of how lookalikes work in order to make informed decisions concerning their ad campaigns.

 

Best practices to build lookalike audiences

  • Find the line between reach and conversion – you need to focus on the number of attributes that you select. Too many might reduce the reach of your lookalike. Too few and your lookalike audience will not be closely related to your seed audience to produce the desired results.
  • The more data, the better the lookalike modeling will be
  • Think about new datasets that your competitors aren’t using. This will give you an advantage and allow you to build better lookalike audiences.